Alcohols

Structure of Alcohols

- Alcohols can be thought of as a derivative of water in which a hydrogen atom has been replaced by an alkyl group.
- Replacement of the 2nd hydrogen on the water molecule leads to an ether.

Water

Methanol (An alcohol)

Methoxymethane (Dimethyl ether) (An ether)

Structure of Alcohols

- Hydroxyl (OH) functional group
- Oxygen is *sp*³ hybridized.

Classification

- Primary/1^o: carbon with –OH is bonded to one other carbon.
- Secondary/2°: carbon with –OH is bonded to two other carbons.
- Tertiary/3°: carbon with –OH is bonded to three other carbons.

Physical Properties

- Unusually high boiling points due to hydrogen bonding between molecules.
- Small alcohols are miscible in water, but solubility decreases as the size of the alkyl group increases.

Hydrogen bonding

δ

 δ^+

0

mm

5+

Boiling Points

Solubility in Water

Structural Formula	Name	MW	bp (° C)	Solubility in Wate r
CH ₃ OH	Methanol	32	65	Infinite
$CH_3 CH_3$	Ethane	30	-89	Insoluble
CH ₃ CH ₂ OH	Ethanol	46	78	Infinite
$CH_3 CH_2 CH_3$	Propane	44	-42	Insoluble
$CH_3 CH_2 CH_2 OH$	1-Propanol	60	97	Infinite
$CH_3 CH_2 CH_2 CH_3$	Butane	58	0	Insoluble
$CH_3(CH_2)_2 CH_2 OH$	1-Butanol	74	117	8 g/100 g
$CH_3(CH_2)_3CH_3$	Pentane	72	36	Insoluble
$HOCH_2 (CH_2)_2 CH_2 OH$	1,4-Butanediol	90	230	Infinite
$CH_3 (CH_2)_3 CH_2 OH$	1-Pentanol	88	138	2.3 g/100 g
$CH_3(CH_2)_4CH_3$	Hexane	86	69	Insoluble

Property	Observation						
Boiling point (bp) and	 For compounds of comparable molecular weight, the stronger the intermolecular forces, the higher the bp or mp. 						
melting point (mp)		CH ₃ CH ₂ CH ₂ CH ₃ VDW bp 0 °C	CH ₃ OCH ₂ CH ₃ VDW, DD bp 11 °C	CH ₃ CH ₂ CH ₂ OH VDW, DD, HB bp 97 °C			
	Increasing boiling point						
	Bp's increase as the extent of hydrogen bonding increases.						
		(CH ₃) ₃ C-OH CH ₃ CH ₂ CHCH ₃		CH ₃ CH ₂ CH ₂ CH ₂ -OH			
		bp 83 °C	bp 98 °C	bp 118 °C			
	Increasing ability to hydrogen bond Increasing boiling point						
Solubility	 Alcohols, ethers, and epoxides having ≤ 5 C's are H₂O soluble because they each have an oxygen atom capable of hydrogen bonding to H₂O (Section 3.4C). 						
	 Alcohols, ethers, and epoxides having > 5 C's are H₂O insoluble because the nonpolar alkyl portion is too large to dissolve in H₂O. 						
	 Alcohols, ethers, and epoxides of any size are soluble in organic solvents. 						

Acidity of Alcohols

- p*K*_a range: 15.5-18.0 (water: 15.7)
- Acidity decreases as alkyl group increases.
- Halogens increase the acidity.
- Phenol is 100 million times more acidic than cyclohexanol!